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Complex-temperature phase diagrams for theq-state Potts model on self-dual families
of graphs and the nature of theq\` limit
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C. N. Yang Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840
~Received 3 July 2001; published 20 November 2001!

Exact calculations of the Potts model partition functionZ(G,q,v) have been presented for arbitraryq and
temperaturelike variablev on self-dual strip graphsG of the square lattice with fixed widthLy and arbitrarily
great lengthLx with two types of boundary conditions. LettingLx→`, the resultant free energy and complex-
temperature phase diagram have been computed, including the locusB where the free energy is nonanalytic.
Results are analyzed for widthsLy51,2,3. These results have been used to study the approach to the large-q
limit of B.
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I. INTRODUCTION

The q-state Potts model has served as a valuable m
for the study of phase transitions and critical phenom
@1,2#. On a lattice, or, more generally, on a~connected! graph
G, at temperatureT, this model is defined by the partitio
function

Z~G,q,v !5 (
$sn%

e2bH, ~1.1!

with the ~zero field! Hamiltonian

H52J(̂
i j &

ds is j
, ~1.2!

where s i51,...,q are the spin variables on each vertexi
PG; b5(kBT)21; and ^ij & denotes pairs of adjacent vert
ces. The graphG5G(V,E) is defined by its vertex setV and
its edge~bond! setE; we denote the number of vertices ofG
as n5n(G)5uVu and the number of edges ofG as e(G)
5uEu. We use the notation

K5bJ, a5eK5u21, v5a21, ~1.3!

so that the physical ranges are~i! a>1, i.e., v>0 corre-
sponding to`>T>0 for the Potts ferromagnet~FM!, with
J.0, and~ii ! 0<a<1, i.e.,21<v<0, corresponding to 0
<T<` for the Potts antiferromagnet~AFM!, with J,0.
One defines the~reduced! free energy per sitef 52bF,
whereF is the actual free energy, via

f ~$G%,q,v !5 lim
n→`

ln@Z~G,q,v !1/n#, ~1.4!

where we use the symbol$G% to denote limn→` G for a given
family of graphs.

On a two-dimensional~2D! lattice, for theq52 Ising
case, and forq53,4, the Potts ferromagnet exhibits
second-order phase transition from a paramagnetic~PM!
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high-temperature phase to a low-temperature phase
spontaneously broken symmetry and long-range ferrom
netic order~magnetization!. For q.4, this transition is first-
order, with a latent heat that increases monotonically withq,
approaching a limiting constant asq→` @2,3#. The behavior
of the Potts antiferromagnet depends on the value ofq and
the type of lattice, as will be discussed further below.

Let G85(V,E8) be a spanning subgraph ofG, i.e., a sub-
graph having the same vertex setV and a subset of the edg
set,E8#E. ThenZ(G,q,v) can be written as the sum@4#

Z~G,q,v !5 (
G8#G

qk~G8!ve~G8!, ~1.5!

wherek(G8) denotes the number of connected compone
of G8. Since we only consider connected graphsG, we have
k(G)51. The formula~1.5! enables one to generalizeq from
Z1 to R1 ~keepingv in its physical range!. The formula
~1.5! shows thatZ(G,q,v) is a polynomial in q and v
~equivalently,a!. The Potts model partition function on
graph G is essentially equivalent to the Tutte polynomi
@5–7# and Whitney rank polynomial@2,8–10# for this graph,
and this connection will be useful below.

Using the formula~1.5! for Z(G,q,v), one can generalize
q from Z1 not just toR1 but to C and v from its physical
ferromagnetic and antiferromagnetic ranges 0<v<` and
21<v<0 to vPC. A subset of the zeros ofZ in the two-
complex dimensional spaceC2 defined by the pair of vari-
ables ~q,v! form an accumulation set in then→` limit,
denotedB, which is the continuous locus of points where t
free energy is nonanalytic. The program of studying stati
cal mechanical models with external field generalized fr
R to C was pioneered by Yang and Lee@11#, and the corre-
sponding generalization of the temperature from physica
complex values was initiated by Fisher@12#. Here we allow
both q and the temperature-like variablev to be complex.
For a given value ofv, one can consider this locus in theq
plane, and we shall sometimes denote it asBq , and similarly,
for a given value ofq ~not necessarilyPZ1!, one can con-
sider this locus in the plane of a complex-temperature v
able such asv or
©2001 The American Physical Society16-1
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z5
v

Aq
. ~1.6!

It will be convenient to introduce polar coordinates, letti
z5uzueiu.

In this paper we shall present exact calculations of
Potts model partition functionZ(G,q,v) for arbitraryq and
v on self-dual strip graphsG of the square lattice with fixed
width Ly and arbitrarily great lengthLx with two types of
boundary conditions. LettingLx→`, we compute the result
ant free energy and complex- temperature phase diag
Results are analyzed for widthsLy51,2,3. We shall use thes
results to study the approach to the large-q limit of B.

There are several motivations for this study. Clearly, n
exact calculations of Potts model partition functions on l
tice strips with arbitrarily large numbers of vertices are
value in their own right. This is especially the case since
free energy of the Potts model has never been calcul
exactly ford>2 except in theq52 Ising case in 2D. Just a
the study of functions of a complex variable can yield
deeper understanding of functions of a real variable, so
the investigation of complex-temperature phase diagram
spin models can provide further understanding of the ph
cal behavior of these models. Besides@12#, complex-
temperature singularities were noticed in early series an
ses~e.g., @13#!, and many studies have been carried out
complex-temperature~Fisher! zeros of the partition function
of the Ising model and its generalization to theq-state Potts
model@14–61#. In particular, several exact determinations
complex-temperature phase diagrams of the Potts mode
infinite-length, finite-width lattice strips@41,52–54,56–58#,
in comparison with both exact solutions for theq52 2D
complex-temperature phase diagrams@12,33,37# and finite-
lattice calculations of Fisher zeros@29,38,39,43,47,48# have
shown that, although the physical thermodynamic proper
of these strips are essentially one-dimensional, one can
ertheless gain important insights into certain compl
temperature properties of the model on the correspond
two-dimensional lattice. For a model above its lower critic
dimension, a complex-temperature phase diagram inclu
the complex-temperature extensions of the paramagnetic
ferromagnetic phases as well as a possible antiferromag
phase and other phases~denotedO in Ref. @33#! that have no
overlap with any physical phase. For the infinite-leng
finite-width strips under consideration here, for finiteq, the
complex-temperature phase diagram includes only PM anO
phases since there are no broken-symmetry phases.

An early study of the complex-temperature phase diag
for the square-lattice Potts model led to the suggestion
the locusB, which is comprised of the circlesua61u5& for
q52 @12# might generalize to the union of the circlesua
21u5Aq and ua11u5A42q for 1<q<4 @22#, but subse-
quent studies found that many of the Fisher zeros in
Re(a),0 half-plane do not lie on a circular arc but inste
show considerable scatter@23,29,38,43#. The infinite square
lattice is self-dual, and for calculations on finite sections
the square lattice, it was found to be useful to employ bou
ary conditions that preserve this self-duality. Stated more
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stractly, one studies lattice graphsG with the property that
the planar dualG* is isomorphic toG, which we write sim-
ply asG5G* . Here we recall that the dual of a planar gra
G with n vertices,e edges, andf faces is the graphG*
obtained by associating a vertex ofG* with each face ofG
and connecting each pair of vertices onG* by edges running
through the edges ofG. It follows that n(G* )5 f (G),
e(G* )5e(G), and f (G* )5n(G). The Potts model parti-
tion function satisfies the relation

Z~G,q,v !5q12 f ~G!ve~G!Z~G* ,q,vd!, ~1.7!

where the dual image ofv is vd , given by

vd5
q

v
, ~1.8!

i.e., in terms ofz, the duality map is the inversion map

zd5
1

z
. ~1.9!

Thus, it is also useful to plot Fisher zeros in terms of t
variable z, since the accumulation setB is invariant under
inversion for a self-dual graph

G5G* ⇒B is invariant under z→ 1

z
. ~1.10!

It was found that complex-temperature zeros calculated
finite sections of the square lattice with duality-preservi
boundary conditions~DBC’s! have the appealing property o
lying exactly on an arc of the unit circleuzu51 in thez plane
for Re(z)*0 @29,38,39#. ~For physical temperature the coe
ficients of powers ofa5eK are positive, so there are no zero
on the positive real axis Re(a).0 for any finite lattice. How-
ever, in the thermodynamic limit, the phase boundary cros
this axis atac511Aq, i.e., zc51.! In Ref. @43# several
types of different self-dual boundary conditions were used
order to ascertain which features are common to each
these and hence might be relevant for the thermodyna
limit. However, because of the scatter of zeros in the Rea)
,0 half plane and the dependence of the pattern of zero
has not so far been possible to reach a conclusion concer
the portion of the complex-temperature phase boundaryB in
this region~although some points on the boundary have be
reliably located by analysis of series expansions@43#!.

An interesting exact result was obtained by Wu and c
laborators, who gave an elegant proof@39#, using Euler’s
identity for partitions, that for the Potts model on the squa
lattice, after having taken the thermodynamic limit so th
zeros ofZ in the complexz plane have merged to form th
continuous locusB, if one takes the further limitq→`, this
locus B is the circle uzu51 for the square lattice. It is
straightforward to show that the same conclusion holds
one keepsLy fixed and finite, and takesLx→`, after which
one takes the limitq→`. Thus, for the infinite-length limit
of the self-dual strips that we consider here, limq→` B is
again the unit circleuzu51. In 2D, the interior and exterior o
this circle uzu51 form the complex- temperature extensio
6-2
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of the PM and FM phases, respectively. Since the infin
length, finite-width strips under study here are quasi-o
dimensional systems, there cannot be any broken-symm
phase at finite temperature for a spin model with short-ra
interactions and hence there is no FM phase or its comp
temperature extension. Note that any finite tempera
point, i.e., 21,v,` gets mapped toz50 in the limit q
→`. The identification of phases thus proceeds as follow
this limit, for the infinite-length finite width strips: the inte
rior of the circleuzu51 is the PM phase, since it is analyt
cally connected to the infinite-temperature pointv5z50.
The phase in the exterior may be interpreted as equivale
the T50 point, in the sense that a finite value ofz in this
region is obtained by taking the double limitq→` and uvu
→` with v/Aq held fixed.

Since, as noted above, for finiteq, the actual pattern o
zeros calculated on finite sections of the square in
Re(z),0 half plane show considerable scatter@29,38,43#,
two questions arise naturally; first, having taken the 2D th
modynamic limit, if one starts with 1/q50 and increases thi
quantity from zero, is there a finite interval in which th
locus B continues to be the circleuzu51 before there are
deviations, or do these deviations occur for any finite va
of 1/q, no matter how small. We shall address this quest
here. A different question can also be posed for a finite s
tion of the square lattice: for such a section, with a given s
and given duality-preserving boundary conditions, is ther
range inz51/q above zero in which all of the finitely man
Fisher zeros still occur on the circleuzu51 or not. This has
been considered in Refs.@38,43,60# and we shall not pursue
it here. Since one does not have an exact solution for the
Potts model for arbitraryq, and hence also no solution fo
the complex-temperature phase boundaryB, it has not been
possible to determine the precise behavior of this locus a
lytically in the q→` limit.

Here one sees the value of exact solutions for the P
model free energy and resultant complex-temperature bo
ary B on infinite-length, finite-width strips, since for thes
strips, one can obtain exact analytic answers to the beha
of B in theq→` limit. As we shall discuss, it is easy to se
that one aspect of this behavior is special to the quasi-o
dimensional nature of the infinite-length strips and is n
relevant for the 2D model, namely, that as 1/q increases from
0, a gap opens in the circlez51. This simply reflects the fac
that for a quasi-one-dimensional spin model with short-ra
interactions there is no finite-temperature phase transi
and the free energy is analytic for all finite temperatures,
hence for 0<z,`. However, this is not a drawback of th
method, since finite-lattice calculations of Fisher zeros
sections of the square lattice have shown that they lie nic
on the circleuzu51 in the region near the pointz51 ~while
avoiding the precise pointz51 if n is finite!. Hence, one can
infer that in the thermodynamic limit, as 1/q is increased
from 0, this portion ofB will remain as an arc of the uni
circle. Indeed, from general arguments@33#, one knows that
for the model above its lower critical dimensionality, whe
there is a ferromagnetic phase, the portion of the ph
boundaryB that separates the complex-temperature ex
sion of the paramagnetic phase from the FM phase m
06611
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remain intact for finite as well as infiniteq. If it were to
bifurcate, this would imply a new third phase between t
PM and FM phases, contrary to the known properties of
Potts model, so, given the invariance ofB under the inver-
sion symmetry~1.10!, this portion must remain on the circl
uzu51.

Since the explicit calculations of Fisher zeros show
large scatter away fromuzu51 in the Re(z),0 half plane
even for values well aboveq54, such asq510 @39,43#, this
suggested that the totality of Fisher zeros would only clus
on the circleuzu51 in the limit q→` itself but some zeros
and some portion of their accumulation setB would deviate
from it for all finite q. Calculations using the usual Hami
tonian formulation of the Potts model and associated tran
matrix-methods become increasingly cumbersome for largq
because of the increasingly many states. For the purpos
studying the large-q behavior of the zeros, it is convenient t
solve forZ(G,q,v) for arbitraryq andv on large finite lat-
tice sections. This was done in Ref.@51# and the zeros were
calculated forq up to 100; again these showed only a slo
approach to the circleuzu51. Together with the previous
calculations forq up to 10, it was concluded in Ref.@51# that
this evidence supported the inference that the totality
Fisher zeros only lie on the circleuzu51 in the limit q
→`. This type of calculations has also been done in R
@60# with the same conclusion. Our exact results on infini
length finite-width strips complement these finite-lattice c
culations and allow a rigorous conclusion that for these st
B deviates fromuzu51 for any 1/q no matter how small.

These results are relevant in another way. Large-q series
expansions~in the variable 1/Aq! have been useful in study
ing the thermodynamic properties of Potts models@62–64#.
Large-q expansions@in the variable 1/(q21)# have also been
useful for a particular special case of the Potts mod
namely, theT50 special case of the Potts antiferromagn
where the partition function on a graphG reduces to the
chromatic polynomial

Z~G,q,21!5P~G,q!, ~1.11!

whereP(G,q) is the chromatic polynomial~in q! expressing
the number of ways of coloring the vertices of the graphG
with q colors such that no two adjacent vertices have
same color@8,65#. Indeed, for a given graphG and for suf-
ficiently largeq, the Potts antiferromagnet exhibits nonze
ground state entropy~without frustration!. This is equivalent
to a ground state degeneracy per site~vertex!, W.1, since
S05kB ln W, whereW($G%,q)5 limn→` P(G,q)1/n. Large-q
series expansions forWr($G%)5q21W($G%,q) have been
given, e.g., in Refs.@66–72#.

A different motivation for the present study is the follow
ing. Just as was true for the double-complexification of fie
and temperature studied in Refs.@35–40#, where one gained
a deeper understanding of the singular locus~continuous ac-
cumulation set of partition function zeros! by considering the
separate projections in the planes of complex field and c
plex temperature by considering these as parts of a si
underlying submanifold~with possible singularities! in the
C2 space of complex temperature and field, so also here,
6-3
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gains similar insight into the projections ofB in the complex
q andv plane by relating these as different slices of the loc
B in the C2 space defined by (q,v).

II. GENERALITIES

We refer the reader to our earlier papers containing ex
calculations ofZ(G,q,v) for a number of further details. We
recall that the formal definition of the free energy may
insufficient to define this function at certain special spec
valuesq5qs @53#; it is necessary to specify the order of th
limits that one uses. We denote the limits with the two d
ferent orders as definitions using different orders of limits
f qn and f nq :

f nq~$G%,q,v !5 lim
n→`

lim
n→qs

n21 ln Z~G,q,v ! ~2.1!

and

f qn~$G%,q,v !5 lim
q→qs

lim
n→`

n21 ln Z~G,q,v !. ~2.2!

Of course, in discussions of the usualq-state Potts mode
~with positive integerq!, one automatically uses the defin
tion in Eq. ~1.1! with Eq. ~1.2! and no issue of orders o
limits arises, as it does in the Potts model with realq. As a
consequence of the above noncommutativity, it follows t
for the special set of pointsq5qs one must distinguish be
tween ~i! @Ba($G%,qs)#nq , the continuous accumulation s
of the zeros ofZ(G,q,v) obtained by first settingq5qs and
then takingn→`, and ~ii ! @Ba($G%,qs)#qn , the continuous
accumulation set of the zeros ofZ(G,q,v) obtained by first
taking n→`, and then takingq→qs . For these specia
points

BnqÞBqn . ~2.3!

We have discussed this type of noncommutativity in ear
papers~e.g., Refs.@73,53#!.

A general form for the Potts model partition function f
the strip graphs considered here, or more generally, for
cursively defined families of graphs comprised ofm repeated
subunits~e.g., the columns of squares of heightLy vertices
that are repeatedLx times to form anLx3Ly strip of a regu-
lar lattice with some specified boundary conditions!, is @53#

Z~G,q,v !5 (
j 51

NZ,G,l

cG, j@lG, j~q,v !#m, ~2.4!

where the termslG, j , the coefficientscG, j , and the total
numberNZ,G,l depend onG through the type of lattice, its
width, Ly , and the boundary conditions, but not on t
length. Following our earlier nomenclature@73#, we denote a
l as leading~5dominant! if it has a magnitude greater tha
or equal to the magnitude of otherl’s. In the limit n→` the
leading l in Z determines the free energy per sitef. The
continuous locusB wheref is nonanalytic thus occurs wher
there is a switching of dominantl’s in Z andP, respectively,
and is the solution of the equation of degeneracy in mag
06611
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tude of these dominantl’s. The special case of this for th
chromatic polynomial was discussed in Refs.@74,75#.

Let us next define the self-dual strip graphs that we c
sider here. The first type, with boundary conditions that
denote as DBC1~following our nomenclature in Ref.@43#!
was discussed in Ref.@38# and illustrated in Fig. 1 of that
paper. We shall need a straightforward generalization of i
the case of anLx3Ly lattice with LxÞLy , and we describe
this as follows. Let the lattice be oriented with thex and y
directions being horizontal and vertical, respectively. Let
of the vertices on the upper and right-hand sides, includ
the corner vertices, connect along directions outward fr
the lattice to a common vertex adjoined to this lattice~so that
the upper right corner connects to this adjoined vertex
edges in both thex and they directions!, while all of the sites
on the lower and left-hand edges, excluding the previou
mentioned corner vertices, have free boundary condition
is easily checked that this graph is self-dual. Note that it
free longitudinal~horizontal! boundary conditions. The num
ber of vertices isn5LxLy11. Graphs of this type were use
for calculations of Fisher zeros in Refs.@38,43#.

The second type of self-dual strip graph, used in Ref.@43#
where it was labeled DBC2@76#, can be described as fol
lows. Let theLx3Ly lattice strip have periodic boundar
longitudinal ~5horizontal! boundary conditions and conne
all of the vertices on the upper side of the strip to a sin
external vertex, while all of the vertices on the lower side
the strip have free boundary conditions@76#. An illustration
of this type of graph is given in Fig. 1. This has also recen
been used for calculation of Fisher zeros in Ref.@60#. In Ref.
@77# we gave exact results for structural properties of Po
model partition functions and chromatic polynomials f
strips of this type, of arbitrarily great length and width, a
presented exact calculations of chromatic polynomials
resultant singular lociB for v521 in theq plane for widths
up to Ly54.

We comment on an interesting feature of the compl
temperature phase diagrams for self-dual infinite-leng
finite-width strips. In our earlier work yielding exact dete
minations of these complex-temperature phase diagrams
non-self-dual strips@53,52,54,56–58#, it was found that for
some cases, e.g., strips with periodic longitudinal bound
conditions,B passes through the origin of theu5a21 plane.
For free longitudinal boundary conditions, this does not h
pen. For the self-dual strip graphs considered here, we
easily prove thatB does not pass throughu50, i.e., v5z

FIG. 1. Example of anLy3Lx strip of the square lattice with
DBC2 boundary conditions, for the caseLy53, Lx54.
6-4
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5`, since by the inversion symmetry underz→1/z, this
would imply that it passes throughz50, but this is the
infinite-temperature (b50) point, where the free energy i
analytic, so no singular phase boundary can pass through
point.

III. L yÄ1 STRIP WITH DBC1

In this section we present the Potts model partition fu
tion Z(Ly3Lx ,DBC1,q,v) for the strips of the square lattic
of width Ly and arbitrarily great lengthLx5m11 containing
m edges in each horizontal row of the strip, with dualit
preserving boundary conditions of type 1. We label suc
strip graph with DBC1 boundary conditions asS,Ly or just
SLy for short and (S,Ly)m to indicate the length. The numbe
of vertices isn5LxLy11. One convenient way to expres
the results is in terms of a generating function

G~S,Ly ,q,v,z!5 (
m50

`

Z~S,Ly ,m,q,v !zm. ~3.1!

As indicated, the coefficients in the Taylor series expans
of this generating function in the auxiliary variablez are the
partition functions for the strip of lengthm. We have calcu-
lated this generating function using transfer matrix meth
and iterative application of the deletion-contraction theor
for the corresponding Tutte polynomial. We find

G~S,Ly ,q,v,z!5
N~S,Ly ,q,v,z!

D~S,Ly ,q,v,z!
, ~3.2!

where the numeratorN(S,Ly ,q,v,z) and the denominato
D(S,Ly ,q,v,z) are polynomials inz, q, andv that depend on
Ly but notLx . The degree of the denominator inz, i.e., the
number ofl’s in the form ~2.4!, is @77#

NZ,S,Ly ,l5degz@D~S,Ly ,q,v,z!#5
2

Ly12 S 2Ly11
Ly

D .

~3.3!

We first treat the minimum-width case,Ly51, which has
the appeal that the analytic results are simple but alre
exhibit a rich variety of behavior for the locusB. This family
of graphs can be represented as an open wheel forme
m11 vertices along the rim, each except the rightmost o
connected by a spoke~edge! with a vertex forming the axle
of the open wheel, and with the rightmost vertex on the r
connected by a double edge to this central vertex. We ca
late for the denominator of the generating function~with the
abbreviationS1 for S,Ly51!

D~S1,q,v,z!512~3v1q1v2!z1v~v11!~v1q!z2

5)
j 51

2

~12lS1 j z!, ~3.4!

where

lS,1,~1,2!5
1
2 @TS16ARS1#, ~3.5!
06611
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TS153v1q1v253Aqz1q1qz2, ~3.6!

RS155v212vq12v31q222v2q1v4

55qz212q3/2z12q3/2z31q222q2z21q2z4,

~3.7!

and for the numerator of the generating function

N~S,1,q,v,z!5AS1,01AS1,1z, ~3.8!

with

AS1,05q~2v1q1v2!, ~3.9!

AS1,152qv~v11!~v1q!. ~3.10!

Reference@78# presented a formula to obtain the chroma
polynomial for a recursive family of graphs in the form o
sums of powers ofl j ’s starting from the generating function
and the generalization of this to the full Potts model partiti
function was given in Eq.@53#. Using this, we have

Z~S1m ,q,v !5
~AS1,0lS1,11AS1,1!

~lS1,12lS1,2!
~lS1,1!

m

1
~AS1,0lS1,21AS1,1!

~lS1,22lS1,1!
~lS1,2!

m. ~3.11!

It is readily verified that this is symmetric under the inte
change lS1,1↔lS1,2. The free energy is given byf
5 ln lS1,1 and is analytic for all finite temperature. Regardin
the locusB as a submanifold~with possible singularities! in
theC2 space defined by the variables (q,v) or ~q, z!, we can
obtain the slices of this locus in the complexq plane for
fixed v and in the complexv or z plane for fixedq.

A. L yÄ1 with DBC1: Bq for fixed v

For the physical rangevP@21,̀ #, the locusB in the q
plane consists of a single self-conjugate arc that has e
points at

qe ,qe* 5v~v2162iAv11!, ~3.12!

and crosses the realq axis at

q52v~v13!. ~3.13!

These pointsqe , qe* are the branch points of the square ro
ARS1. For the Potts antiferromagnet atT50, i.e., v521,
the locusB degenerates to the single pointq52. As one
increases the temperature aboveT50, B expands to form the
generic arc as given above, but then asT→`, i.e., v→02,
this arc shrinks again to a point at the origin,q50. For the
Potts ferromagnet, asT decreases from infinity, i.e.,v in-
creases from 0, the arc is centered in the negative Re(q) half
plane and crosses the negative realq axis at the value given
in Eq. ~3.13!.
6-5
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B. L yÄ1 with DBC1: Bz for fixed q

We discuss here the locusB in the complexz plane for
fixed q. We shall concentrate on the range of realq>1. The
locus B is defined by the equality of magnitudesulS,1,1u
5ulS,1,2u. This equality can arise in two, in general separa
ways. First,~for realq!, on the real axis of thez plane, since
TS1 is real, if RS1,0 so that the square root in Eq.~3.5! is
pure imaginary, it follows thatulS,1,1u5ulS,1,2u. Second, at
the four points whereRS150, clearlylS,1,15lS,1,2. At cer-
tain special values ofq some of these six points can coincid

Proceeding to analyzeB, we first observe that atq51,
this locus is comprised of a closed oval curve that surrou
the point z521 and crosses the realz axis at z5(1/
2)(236A5), i.e., atz.22.618 and20.3820. The crossing
point on the left is atz52B5 , where

Br54 cos2S p

r D , ~3.14!

is the Tutte-Beraha number. Recall here thatB[Bqn ; if one
were to use the opposite order of limits in Eq.~2.3!, then
Z(G,q51,v)5(v11)n and all zeros collapse to the sing

FIG. 2. Singular locusB in thez plane for the free energy of th
q55/4 Potts model on theLx→` limit of the Ly51 strip with
DBC1 boundary conditions. For comparison, zeros ofZ for Lx

521 are shown.

FIG. 3. Same as Fig. 2, forq5(5/4)251.5625.
06611
,

s

point v5z521. This illustrates the noncommutativity dis
cussed in the introduction. Asq increases aboveq51, two
complex-conjugate arcs sprout out from the pointsz
5e62p i /3, so thatB is comprised of the union of these arc
and the closed oval curve. The endpoints of the arcs occu
the four zeros ofRS1 , i.e., branch point zeros ofARS1. The
right-hand endpoints of the arc are located at the comp
conjugate pair of points

zae,zae* 5q21/2@Aq212 1
2 6 i ~Aq211 3

4 !1/2#, ~3.15!

at the angles6uae given by

uae5arctanF @314Aq21#1/2

2Aq2121
G . ~3.16!

The left-hand endpoints occur at

zse,zse
215q21/2@2Aq212 1

2 6~Aq212 3
4 !1/2#.

~3.17!

For q,qac, where

qac5~5/4!251.5625, ~3.18!

FIG. 4. Same as Fig. 2, forq51.7.

FIG. 5. Same as Fig. 2, forq51.85.
6-6
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COMPLEX-TEMPERATURE PHASE DIAGRAMS FOR THE . . . PHYSICAL REVIEW E 64 066116
zse is complex andzse
215zse* , while for q>(5/4)2, zse is real.

For q5(5/4)2, we have zse521. Thus, asq increases
through the valueq5qac, the left-hand endpoints of th
complex-conjugate arcs come together and pinch the n
tive real axis atz521. Forq.qac, this part of the locusB
forms a line segment on the negative real axis centere
z521, whose right-hand end iszse and left-hand end its
inverse. The above-mentioned oval curve crosses the n
tive realz axis at the two points whereTS150, i.e.,

z t ,z t
215

1

2Aq
@236A924q#. ~3.19!

For q51, z t5(1/2)(231A5).20.3820,z t
2152(1/2)(3

1A5)52B5 , as discussed above. The locusB and corre-
sponding complex-temperature phase diagram is plotted f
typical value in the interval 1,q,qac, namely, q55/4
51.25, in Fig. 2. Hereuae5p/2. For comparison, complex
temperature Fisher zeros are shown for a long finite strip
is evident, the density decreases strongly as one approa
the intersection points~multiple points in the terminology o
algebraic geometry! where the arcs and the oval curves cro
each other. This is the same behavior that we found in m
previous studies of complex-temperature zeros for spin m
els, e.g.,@78,41,36,44#. The complex-temperature extensio
of the PM phase occupies the fullz plane except for anO
region enclosed by the oval curve~and the singular set o
measure zero comprised byB itself!.

For an intervalq>qac, there are twoO phases, namely
the regions surrounded by the oval curve and separate
the arc of theuzu51 circle that passes throughz521. The
rest of thez plane is occupied by the complex-temperatu
extension of the PM phase. This type of situation is illu
trated in Fig. 3 forq5(5/4)2 and Fig. 4 forq51.7.

As q increases further, the twoO phases that were con
tiguous now contract and pull away from each other. This
illustrated in Fig. 5 forq51.85. Eventually, these twoO
phases pull completely away so that they are no longer c
tiguous; they are then centered around the endpoints of
line segment. An example is shown in Fig. 6 forq51.9.
Here the crossing of the right-handO phase, i.e., the crossin

FIG. 6. Same as Fig. 2, forq51.9.
06611
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nearest to the origin, occurs atz t and its inverse is the left-
most crossing of the otherO phase.

As q increases toq52, the two O phases contract to
points and disappear. One can see this analytically sinc
q52 the crossingz t521/& coincides with the line seg
ment endpointzae521/& and similarly for their inverses
In the interval 2,q,9/452.25 the pointsz t and z t

21 are
located in the interior of the line segment and do not pla
special role. Asq increases aboveq59/4, there ceases to b
any real-q solution of the conditionTS150. The locusB and
complex-temperature phase diagram are shown forq53 in
Fig. 7. A topological feature ofB for this region ofq, namely,
the presence of a complex-temperature endpoint of a
segment on the left, is reminiscent of the suggestive po
bility of prongs~or perhaps cusps! on B for the square-lattice
Potts model inferred from the combination of calculations
Fisher zeros and the correlation of the positions of th
zeros with locations of complex-temperature singularit
that were reliably determined from analyses of lo
temperature series expansions in Ref.@43# ~see also Refs.
@47, 48#!. The angleuae of the upper arc endpoint decreas
as q increases, i.e., this endpoint moves toward the poinz
51 on the real axis. In Table I we list some explicit values
this angleuae as a function ofq for ~theLx→` limit of ! this
strip.

As q gets large, the right-hand arc endpoints move do
toward the pointz51 and the circular arc finally pinches th
point in the limit asq→`. We calculate the following ex-
pansions for the position of the upper arc endpoint
largeq:

FIG. 7. Same as Fig. 2 forq53.

TABLE I. Values of arc endpoint anglesuae for various infinite-
length finite-width square lattice strips with duality-preservi
boundary conditions. Theuae values are the same for DBC1 an
DBC2.

Ly q51 q52 q53 q54 q510

1 120° 69.3° 58.1° 52.0° 37.8°
2 88.8° 47.7° 38.8° 34.1° 23.7°
6-7
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zae511 iq21/42
1

2
q21/21

3

23 iq23/42
1

2
q212

41

27 iq25/4

1
123

210 iq27/42
1

23 q221O~q29/4!, ~3.20!

~the lower one being the complex conjugate! and, for the
right and left endpoints of the line segment. On the left, aq
gets large the line segment contracts towardz521 and fi-
nally degenerates to a point atq5`. We calculate the fol-
lowing expansion for the positions of the endpoints of t
line segment for largeq:

zse,zse
215216q21/42

1

2
q21/27

3

23 q23/41
1

2
q217

41

27 q25/4

7
123

210 q27/41
1

23 q221O~q29/4!. ~3.21!

Thus, in the limit asq→`,B becomes the unit circleuzu
51.

Going the other way, let us start atq5`, whereB is the
circle uzu51. As q decreases from infinity, two changes o
cur immediately inB: ~i! the circle breaks open on the righ
side, forming two arcs with endpoints at the angles given
Eq. ~3.16! that recede away from the real axis, and~ii ! a real
line segment sprouts out from the pointz521. Feature~i!
reflects the quasi-one-dimensional nature of theLx→` limit
of this family of strip graphs, since for finiteq, the free
energy of the Potts ferromagnet is analytic for all finite te
peratures. This feature does not hold in the thermodyna
limit on the square lattice. As was discussed in Refs.@33, 34#
for the Ising model and in Ref.@43# for the general Potts
model, the region arounda51, i.e.,v50, which is the para-
magnetic phase, is not analytically connected to the brok
symmetry, ferromagnetic phase; hence the part of the ph
boundaryB that separates the complex-temperature ex
sions of the PM phase and FM phases from each other m
remain intact asq decreases from infinity. However, the d
viation on the left serves as a prototype of the sort of dev
tions that are suggested by finite-lattice calculations of Fis
zeros for sections of the square lattice@29,39,43,60# and
gives some insight, as an exactly calculable example, of h
these deviations arise. Asq decreases to sufficiently sma
values, the line segment changes to a region arounz
521. As we shall show below, the nature of the deviati
on the left can be more complicated for wider strips. Th
from the point of view of increasingq, B only becomes the
unit circle uzu51 in the limit q→`.

We next point out another important feature of these
sults. For theq53 case,B crosses the real axis atz
521/), its inverse2), and atz521. Transforming back
to the v plane, these points correspond tov521, v523,
and v52), respectively. The crossing atv521, i.e., a
50, connotes a zero-temperature critical point of theq53
Potts antiferromagnet on this infinite-lengthLy51 strip
@88,89#. This is very interesting, since this model also ha
zero-temperature critical point on the~infinite! square lattice.
Thus, an infinite-length strip with widthLy51 already ex-
06611
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hibits a feature of the Potts antiferromagnet on the f
square lattice. As will be seen below, this is also true of
other widthsLy52, 3 for which we have obtained exac
solutions for the Potts model free energy. The crossing av
523, i.e.,a522, is a complex-temperature singular poi
that is the dual image ofa50 and, by duality, the singularity
in the free energy is the same as at the physical ze
temperature critical point, in accordance with the general d
cussion in Ref. @45# relating physical and complex
temperature singularities by duality. It is instructive to vie
the locusB in the complexz or v plane for fixedq as a slice
of the singular subset in the fullC2 space defined by the pa
of variables or (q,v). Thus, the crossing ofB at v521 for
q53 is the point (q,v)5(3,21) and corresponds to th
crossing of the slice ofB at q53 in the q plane at fixedv
521. This is precisely theqc that we found previously in
our study of chromatic polynomials and their asympto
limits and lociB for this family of graphs in Ref.@77#. It will
be recalled that we found that thisqc53 value was universa
for all of the widths 1<Ly<4 for which we calculated exac
solutions for the chromatic polynomial and resultantB. As
we shall show below, this corresponds to the feature that
each of the widths of strips that we study here,B passes
throughv521, i.e.,z521/) ~and, by duality, its inverse
z52)! for q53.

For the Ising caseq52, B crosses thev axis atv521
and the dual imagev522. The crossing atv521 connotes
a zero-temperature critical point for the Ising antiferroma
net on theLx→` limit of this graph.

We have also calculated Fisher zeros for the strips w
DBC1 and Ly52, 3. A typical example isLy53, q54,
shown in Fig. 8. For lack of space we do not show the oth
here, but they are available upon request.

IV. L yÄ1, DBC2

To elucidate the dependence ofB on the self-dual bound-
ary conditions, we consider theLy51 strips with DBC2. We
shall denote this family generically asL, andL, 1 or L1 to

FIG. 8. Complex-temperature Fisher zeros in thez plane for the
q54 Potts model on theLy53 strip with DBC1 boundary condi-
tions with Lx521 (n564).
6-8
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specify the width. The number ofl’s in the form ~2.4!, is,
from Ref. @77#

NZ,L,Ly ,l5S 2Ly11
Ly11 D . ~4.1!

In particular, forLy51, this givesNZ,L,1,l53. We find

lL,1,15v, lL,1,25lS,1,1, lL,1,35lS,1,2. ~4.2!

The corresponding coefficients in Eq.~2.4! are

cL1,15k~2!5q~q22!, ~4.3!

cL1,j5k~1!5q for j 52,3, ~4.4!

where@77#

k~d!52FU2dSAq

2 D 2T2dSAq

2 D G5AqU2d21SAq

2 D
5 (

j 50

d21

~21! j S 2d212 j
j Dqd2 j , ~4.5!

FIG. 9. Singular locusB in thez plane for the free energy of th
q52 Potts model on theLx→` limit of the Ly51 strip DBC2
boundary conditions. For comparison, zeros ofZ for Lx520 are
shown.

FIG. 10. Same as Fig. 9, forq53.
06611
whereTn(x) and Un(x) are the Chebyshev polynomials o
the first and second kinds. Structural properties ofZ(G,q,v)
for these strips have interesting connections with Temper
Lieb algebras and Bratteli diagrams, which were pointed
in Ref. @77#.

In Figs. 9–13 we show the locusB and associated
complex-temperature phase diagram in thez plane for the
valuesq52, 3, 4, 5, and 100.~Note that the locusB shown
in Fig. 9 isBnq.! The arc endpoints of the portion ofB lying
on the circleuzu51 are the same as for the~Lx→` limit of
the! Ly51 strip with DBC1, i.e.,zae, zae* given in Eq.~3.15!.
The reason for this property is that in this area of thez plane
the locusB is determined by the equality in magnitude
two terms,lL,1,2 andlL,1,3, which are common to the parti
tion functions for DBC1 and DBC2. In our calculations fo
Ly52, 3 we have found the same property to hold, so that
a given widthLy and value ofq, for the strips considered
here, the locations of the right-hand arc endpoints are in
pendent of whether one uses DBC1 or DBC2 boundary c
ditions. However, there is an interval inq for which lL,1,1 is
dominant in the vicinity ofz521, and this leads to at leas
one complex-temperatureO phase~in the nomenclature of
Ref. @33#!. Figures 10 and 11 illustrate this for the casesq
53 andq54. One observes complex-conjugate triple poin

FIG. 11. Same as Fig. 9, forq54.

FIG. 12. Same as Fig. 9, forq55.
6-9
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SHU-CHIUAN CHANG AND ROBERT SHROCK PHYSICAL REVIEW E64 066116
on B for q53. An exactly solved case of a comple
temperature phase boundary exhibiting such a triple p
was given in Ref.@42#, where it was shown how this triple
point results from three curves onB coming together such
that as one travels along a given curve, beyond the inter
tion point thel’s that were leading and degenerate in ma
nitude on this curve are no longer leading, so that their
generacy is not relevant toB. In our exact calculations ofB
in the q plane forn→` limits of chromatic polynomials we
have found a number of such triple points~e.g.,@79–84,78#!.
ConsideringB as the union of the various curves and li
segments that comprise it, this is a multiple point~intersec-
tion point! on B since it lies on multiple branches ofB. In a
different nomenclature in which one considers each of
algebraic curves individually, including the portions whe
the pairs of degenerate-magnitudel’s are not dominant so
that these portions are not onB, then such triple points are
not multiple points on each individual algebraic curve, sin
these individual curves pass through the triple point
shown in Fig. 2 of Ref.@42# ~see also Refs.@85–87#!.

In general, as we did for the DBC1 strips, we find that
any finiteq no matter how large,B deviates from the circle
uzu51. As discussed above, the gap that opens in the circ
the vicinity of z51 is a property that is special to the qua
one-dimensional nature of these infinite-length, finite-wid
strips. However, just as our previous exact results sho
that certain complex-temperature properties of quasi-o
dimensional spin models were similar to those of the sa
models in 2D@41,53,54,56–58#, so also the deviations in th
region aroundz521 are indicative of what can happen
2D in this case. Note that forq.1, the pointz521, i.e.,
v52Aq, is a complex temperature, rather than physic
point. We can now use our results to address the issue o
radius of convergence of the 1/q expansion as regards th
form of B. In general, if an expansion of some quantity in
variable e has a finite radius of convergenceec , then,
roughly speaking, the behavior forueu,ec should be quali-
tatively the same as fore50. Our results suggest that,
least for the infinite-length finite-width strips, the 1/q expan-
sion has zero radius of convergence insofar as propertie
the locusB are concerned. This follows sinceB in the z
plane differs qualitatively for any nonzero value of 1/q from

FIG. 13. Same as Fig. 9, forq5100.
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its form at 1/q50. We know that the deviation nearz51,
i.e., the physical PM-FM transition temperature given
vc5Aq, that occurs for these quasi-one-dimensional str
will be absent in 2D. However, the deviation in the vicini
of the complex-temperature pointz521 should be a more
general feature, not limited to the quasi-one-dimensional
ture of the strips considered here. This inference follo
from ~i! our previous experience comparing exactly det
mined complex-temperature features of Ising model ph
diagrams for infinite-length strips and in 2D,~ii ! the ob-
served scatter of Fisher zeros in 2D@29,38,43# in this
complex-temperature region, and~iii ! reliable determinations
of locations of complex-temperature singularities via ana
ses of low-temperature series@43,45,47,48# and the correla-
tion of these with points onB @33,37,43,47,48#. Hence for
the locusB, our present exact results suggest that theq
expansion has zero radius of convergence. We empha
that this does not reduce the value of these large-q expan-
sions, since the point where the deviation occurs is gen
cally a complex-temperature point, and this type of deviat
does not occur near the physical PM-FM phase transi
point. Indeed, large-q expansions yield excellent agreeme

FIG. 14. Complex-temperature Fisher zeros in thez plane for
the q52 Potts model on theLy52 strip with DBC2 boundary
conditions withLx520 (n540).

FIG. 15. Same as Fig. 14, forq53.
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with Monte Carlo measurements of thermodynamic qua
ties in the Potts model@62,64# and also for the ground stat
degeneracyW(q) in theT50 Potts antiferromagnet@73,66–
72#. Furthermore, it is easily checked that the dominant te
l that determines the free energy on the strips that we c
sider does have a well-defined large-q expansion~in the vari-
able 1/Aq!. For example, forLy51 with DBC1 or DBC2,
removing the leading factor ofq, we have the expansion fo
q21lS,1,1 for largeq,

q21lS,1,15112vq211v2~v11!q221v3~v221!q23

1O~q24!511
z~z222!

z221
q21/2

2
z2~z21z21!~z22z21!

~z221!3 q21

1
z3~z211!~z21z21!~z22z21!

~z221!5 q23/2

1O~q22!. ~4.6!

Note the poles atz561 in this expansion. Parentheticall
we note that our findings here concerning the large-q expan-

FIG. 16. Same as Fig. 14, forq54.

FIG. 17. Same as Fig. 14, forq5100.
06611
i-

n-

sion are not related to our earlier studies of families
graphs for which W(q) has no large-q expansion
@73,90,91,81,52# ~see also Ref.@92#! since in those cases, th
breakdown of the 1/q expansion is equivalent to the proper
that the singular locusB is noncompact in theq plane, pass-
ing through the origin of the 1/q plane. This sort of break-
down does not occur for the present families of graphs, a
clear from the fact thatB is compact in theq plane, shown in
Ref. @77# and above.

V. WIDER STRIPS

We have also calculatedZ(G,q,v) for arbitrary q and v
for wider strips withLy52 andLy53, for which our general
formulas~3.3! and~4.1! from Ref. @77# yield for the number
of l’s the results NZ,DBC1,2,l55, NZ,DBC2,2,l510,
NZ,DBC1,3,l514, andNZ,DBC2,3,l535. The analytic expres
sions for thel’s are too lengthy to list here. In Figs. 14–2
below we show plots of Fisher zeros in thez plane for vari-
ous values ofq.

It is interesting to note that the simplification of th
complex-temperature phase diagram for the Potts mode
the circle uzu51 for q→` proved in Ref.@39# and studied

FIG. 18. Complex-temperature Fisher zeros in thez plane for
the q52 Potts model on theLy53 strip with DBC2 boundary
conditions withLx520 (n560).

FIG. 19. Same as Fig. 18, forq53.
6-11
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further here with exact results is somewhat similar to
simplification of the complex-temperature phase diagram
the 2D spin-s Ising model in the limits→` to the circle
uusu51 in the plane of the Boltzmann variableus5e2K/s2

@93,94,41#. In both cases, the approach to the limit is singu
in the sense that there are deviations from the asymp
locus.

VI. CONCLUSIONS

In summary, we have presented exact calculations of
Potts model partition functionZ(G,q,v) on self-dual strip
graphsG of the square lattice with fixed widthLy and arbi-
trarily great lengthLx with two types of boundary condi
tions. In the infinite-length limit we have studied the resu
ant complex-temperature phase diagram. In particular,
have considered the widthsLy51,2,3. We have used thes
results to study the approach to the large-q limit of B, where
this locus is the unit circleuzu51. We find that, for a given
Ly and set of self-dual boundary conditions, a portion ofB
lies on this unit circle, while for any finiteq, a portion devi-
ates from this circle. For the strips considered here we
that the right-hand arc endpoints on the circle are indep
dent of whether the longitudinal boundary conditions are

FIG. 20. Same as Fig. 18, forq54.

FIG. 21. Same as Fig. 18, forq5100.
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riodic or free and to curve around and pinch the real axis
z51 asq→`. For a fixed value ofq, asLy increases, the
right-hand arc endpoints move closer toz51. On the left, the
nature of the complex-temperature phase diagram was fo
to depend in detail on both the type of boundary conditio
and the width of the strip. Asq→`, the deviations typically
include real line segments as well as possibleO phases. One
feature was found for each width considered, namely, that
the DBC2 strips, forq53, B crosses the realz axis at z
521/) and at2). We showed that this is equivalent t
the fact that forv521, each of the infinite-length strips tha
we studied in Ref.@77# with 1<Ly<4 and DBC2 hadqc
53 as for the infinite square lattice. As discussed, the ga
the locusB that opens aroundz51 as 1/q increases above
zero is a consequence of the quasi-one-dimensional natu
the strips. However, the behavior in the Re(z),0 region near
z521 can give some insight as to howB could behave for
largeq on the infinite square lattice.
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APPENDIX

1. General

The most compact way to express a Potts model parti
function Z(G,q,v) is often in terms of the correspondin
Tutte polynomialT(G,x,y). For the reader’s convenience
we recall the definition of the Tutte polynomial and som
basic formulas relating these functions here~e.g.,@53#!. For
an arbitrary graphG the Tutte polynomial ofG, T(G,x,y), is
given by @5–7#

T~G,x,y!5 (
G8#G

~x21!k~G8!2k~G!~y21!c~G8!, ~A1!

where the spanning subgraphG8 was defined in the intro-
duction, and we recall thatk(G8), e(G8), and n(G8)
5n(G) denote the number of components, edges, and v
ces ofG8, where

c~G8!5e~G8!1k~G8!2n~G8!, ~A2!

is the number of independent circuits inG8. As stated in the
text, k(G)51 for the graphs of interest here. Now let

x511
q

v
, y5a5v11, ~A3!

so that

q5~x21!~y21!. ~A4!

Then

Z~G,q,v !5~x21!k~G!~y21!n~G!T~G,x,y!. ~A5!
6-12
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For a planar graphG the Tutte polynomial satisfies th
duality relation

T~G,x,y!5T~G* ,y,x!, ~A6!

where G* is the ~planar! dual to G. As discussed in Ref
@53#, the Tutte polynomial for recursively defined grap
comprised ofm repetitions of some subgraph has the form

T~Gm ,x,y!5(
j 51

Nl

cT,G, j~lT,G, j !
m. ~A7!

One special case of the Tutte polynomial of particular int
est is the chromatic polynomialP(G,q). This is obtained by
setting y50, i.e., v521, so thatx512q; the correspon-
dence isP(G,q)5(2q)k(G)(21)nT(G,12q,0).

2. Strips with DBC1

The generating function representation for the Tutte po
nomial for the stripSm of the square lattice with lengthLx
5m11 vertices, i.e.,m edges in each horizontal row, and
width Ly , with duality preserving boundary conditions o
type 1, is

GT~Sm ,Ly ,x,y,z!5 (
m50

`

T~Sm ,Ly ,x,y!zm. ~A8!

We have

GT~S,Ly ,x,y,z!5
NT~S,Ly ,x,y,z!

DT~S,Ly ,x,y,z!
. ~A9!

For Ly51 we find

NT~S,1,x,y,z!5~x1y!2xyz, ~A10!

DT~S,1,x,y,z!512~11x1y!z1xyz25)
j 51

2

~12lT,S,1,j z!,

~A11!

with

lT,S,1~1,2!5
1
2 $11x1y6@112~x1y!1~x2y!2#1/2%,

~A12!

T~Sm ,x,y!5FAT,S,0lT,S,11AT,S,1

lT,S,12lT,S,2
G~lT,S,1!

m

1FAT,S,0lT,S,21AT,S,1

lT,S,22lT,S,1
G~lT,S,2!

m.

~A13!

For Ly52 we find

NT~S,2,x,y,z!5AS2,01AS2,1z1AS2,2z
21AS2,3z

31AS2,4z
4,

~A14!

where

AS2,05x1y1xy1x21y2, ~A15!
06611
-

-

AS2,152@x1y12~x21y2!13xy15xy~x1y!

1xy~x21y2!1x31y31~xy!2#, ~A16!

AS2,25xy@3~x1y!14~x21y2!16xy13xy~x1y!1x31y3

1~xy!2#, ~A17!

AS2,352~xy!2@2~x1y!1x21y213xy1xy~x1y!#,
~A18!

AS2,45~xy!4, ~A19!

DT~S,2,x,y,z!511bS2,1z1bS2,2z
21bS2,3z

31bS2,4z
4

1bS2,5z
5, ~A20!

where

bS2,152@3~11x1y!1xy1x21y2#, ~A21!

bS2,25113~x1y!13~x21y2!18xy1~x31y3!

15xy~x1y!1xy~x21y2!1~xy!2, ~A22!

bS2,352xy@315~x1y!14~x21y2!16xy1~x31y3!

13xy~x1y!1~xy!2#, ~A23!

bS2,45~xy!2~11x!~11y!~11x1y!, ~A24!

bS2,552~xy!4. ~A25!

For Ly53 our general results in Ref.@77# yield the result
that there are 14 terms, and we find that thelT,S,3,j ’s are
roots of an algebraic equation of degree 14. This is
lengthy to record here, but is available upon request.

3. Strips with DBC2

We have

T~Lm ,Ly ,x,y!5 (
j 51

NT,L,Ly ,l

cT,L,Ly , j~lT,L,Ly , j !
m,

~A26!

whereNT,L,Ly ,l5NZ,L,Ly ,l , and our general formula for this
number, from Ref.@77# was given in Eq.~4.1!.

a. LyÄ1

We haveNT,L,1,l53 and

lT,L,1,151, ~A27!

lT,L,1,j5lT,S,1,j 21 for j 52,3, ~A28!

wherelT,S,1,1 andlT,S,1,2 were given in Eq.~A12!. The cor-
responding coefficients are

cT,L,1,15q21k~2!5q225xy2x2y21, ~A29!

cT,L, j5q21k~1!51 for j 52,3, ~A30!
6-13
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wherek (d) was defined in Eq.~4.5! in the text.

b. LyÄ2

We haveNT,L,2,l510. The termlT,L,2,1 is

lT,L,2,151. ~A31!

The lT,L,2,j for 2< j <5 are solutions to the equation

j42@2~x1y!13#j31@x21y213~x1y!14xy11#j2

2xy@2~x1y!13#j1~xy!250. ~A32!

The lT,L,2,j for 6< j <10 are solutions to the equation

j51bS2,1j
41bS2,2j

31bS2,3j
21bS2,4j1bS2,550.

~A33!

The corresponding coefficients are

cT,L,2,15q21k~3!5~q21!~q23!

5~xy2x2y!~xy2x2y22!, ~A34!

cT,L,2,j5q21k~2!5q225xy2x2y21 for 2< j <5,
~A35!

cT,L,2,j5q21k~1!51 for 6< j <10. ~A36!

c. LyÄ3

Here our general formulas in Ref.@77# yield the results
that there are 35 terms in all, comprised of~i! one term with
coefficient q21k (4), namely, lT,L,3,151, ~ii ! six terms
lT,L,3,j , 2< j <7, with coefficientq21k (3), ~iii ! 14 terms
lT,L,3,j for 8< j <21 with coefficientq21k (2), and ~iv! 14
termslT,L,3,j with 22< j <35 with coefficientq21k (1). The
terms in~ii ! are roots of the sixth-degree equation

j62~3x13y15!j51~3x219yx110x13y2110y16!j4

2~x319yx215x219y2x120yx16x1y315y216y

11!j31xy~3x219yx110x13y2110y16!j2

2x2y2~3x13y15!j1x3y350. ~A37!

The equation of degree 14 for thelT,L,3,j with coefficient
q21k (1) is the same as the single degree-14 equation for
terms in theLy53 strip with DBC1. Both this and the othe
degree-14 equation are too lengthy to list here, but can
provided at request.

4. Special values of Tutte polynomials

For a given graphG5(V,E), at certain special values o
the argumentsx andy, the Tutte polynomialT(G,x,y) yields
quantities of basic graph-theoretic interest@7–10#. We recall
some definitions: a spanning subgraph was defined at
beginning of the paper; a tree is a connected graph with
cycles; a forest is a graph containing one or more trees;
a spanning tree is a spanning subgraph that is a tree.
06611
e
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recall that the graphsG that we consider are connected. Th
the number of spanning trees ofG, NST(G), is

NST~G!5T~G,1,1!, ~A38!

the number of spanning forests ofG, NSF(G), is

NSF~G!5T~G,2,1!, ~A39!

the number of connected spanning subgraphs ofG,
NCSSG(G), is

NCSSG~G!5T~G,1,2!, ~A40!

and the number of spanning subgraphs ofG, NSSG(G), is

NSSG~G!5T~G,2,2!. ~A41!

Since the graphs that we consider are self-dual, and using
symmetry relation~A6!, we have

NSF~G!5NCSSG~G* !5NCSSG~G!. ~A42!

From our calculations of Tutte polynomials, we find th
following results.

5. L yÄ1, DBC1

NST~S1m!5S 11
2A5

5 D S 31A5

2 D m

1S 12
2A5

5 D
3S 32A5

2 D m

, ~A43!

NSF~S1m!5NCSSG~S1m!

5S 3

2
1& D ~21& !m1S 3

2
2& D ~22& !m,

~A44!

NSSG~S1m!52e~S1m!522~m11!. ~A45!

Since these quantities grow exponentially, it is natural
define an associated quantity that measures this growth@95–
97#. In particular, for the number of spanning trees, we defi

z$G%5 lim
n→`

n21 ln NST~$G%! . ~A46!

For the presentLy51, DBC1 strips, we thus havez5 ln@(3
1A5)/2#.0.9624. A general upper bound on the number
spanning trees of a graphG is @98#

NST~G!<
1

n S 2uEu
n21D n21

. ~A47!

For the presentLy51, DBC1 strips, this gives the uppe
boundz,2 ln 2.1.386, which is seen to be satisfied by o
result.
6-14
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6. L yÄ1, DBC2

NST~L1m!5221S 31A5

2 D m

1S 31A5

2 D m

,

~A48!

NSF~L1m!5NCSSG~L1m!5221~21& !m1~22& !m,
~A49!

NSSG~L1m!52e~L1m!522m. ~A50!

As discussed before@53,97#, for a givenLy and set of trans-
verse boundary conditions, the value ofz is the same, inde-
pendent of whether the longitudinal boundary conditions
free, as in DBC1 or periodic, as for DBC2.

7. L yÄ2, DBC2

NST~L2m!5322(
j 52

5

@lT,L,2,j~1,1!#m

1(
j 56

10

@lT,L,2,j~1,1!#m, ~A51!
cs

pp
a

1

oc

06611
e

wherelT,L,2,j (1,1), 2< j <5 and 6< j <10 are the roots of
Eq. ~A32! and Eq.~A33!, respectively, forx51, y51, viz,
j427j3113j227j1150, and (j21)(j4211j3125j2

211j11)50

NSF~L2m!5NCSSG~L2m!5322F S 31A5

2 D m

1S 32A5

2 D m

1~31A5!m1~32A5!mG
1(

j 56

10

@lT,L,2,j~2,1!#m, ~A52!

wherelT,L,2,j (2,1), 6< j <10 are the roots of Eq.~A33! for
x52, y51, viz, j5219j4194j32162j2196j21650

NSSG~L2m!52e~L2m!524m. ~A53!

Hence, in particular, for spanning trees, we findz.1.044 for
Ly52. It is straightforward to use our exact calculations
Tutte polynomials forLy53 with DBC1 and DBC2 bound-
ary conditions to list similar results for spanning trees, et
al
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